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Supersonic Airplane Study and Design

Samson Cheung

Introduction

A supersonic airplane creates shocks which coalesce and form a classical N-wave on the

ground, forming a double bang noise trothed sonic boom. A recent supersonic commercial

transport (the Concorde) has a loud sonic boom (over 100 PLdB) and low aerodynamic

performance (cruise lift-da'ag ratio 7). To enhance the U.S. market share in supersonic

transport, an ah'framer's m,'u'ket risk for a low-boom ah'plane has to be reduced. Computa-

tional fluid dynamics (CFD) is used to design airplanes to meet the dual constraints of low

sonic boom and high aerodynamic performance.

During the past year, a resem'ch effort was focused on three main topics. The first was to

use the existing design tools [ 1,2], developed in past years, to design one of the low-boom

wind-tunnel configurations (Ames Model 3) for testing at Ames Research Center in April

1993. The second was to use a Navier-Stokes code (Overflow) to support the Oblique-All-

Wing (OAW) study at Ames. The third was to study an optimization technique applied on

a Haack-Adams body to reduce aerodynamic drag.

Ames Model 3

Efforts were made to design a new wing/body/nacelle configuration which had'a reduced

lower sonic boom relative to the baseline. The baseline configuration, 1080-911 from Boe-

ing Company [3], is a low boom High Speed Civil Transport (HSCT) concept.

The computational code that was used in the design process was a combination of several

CFD codes and an optimizer (NPSOL). The computational tools which interconnect in the

optimization procedure are listed below:

• UPS3D code: 3-D p,'u'abolized Navier-Stokes code [4]

• NPSOL: optimization code

• HYPGEN: hyperbolic grid generator

• LHF: sonic boom extrapolation code based on Whitham's theory,

• DB: sonic boom loudness calculation based on Stevens' Mark VII method

This optimization procedure was applied to modify the baseline configuratit_n ( I080-911).

The result of the optimization was used to build a wind-tunnel model (Ames Model 3).

This wind-tunnel model was tested in the Ames 9'x7' wind tunnel in April 1993.

Although the wind-tunnel data of Model 3 has not been released, the CFD calculation

shows that the baseline configuration has a loudness level about I00 PLdB: whereas
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Model 3 has about 92 PLdB. The results of this mseal'ch were presented in the Sonic

Boom Workshop held at Ames Resemch Centre; May 12-14, 1993 [5]. The presented

materials a.re under ITAR regulation and will be published under restricted distribution.

Figure 1 shows the configuration and the flow field of Model 3. The plot at the lower right-

hand corner of the figure shows the sonic booms of the baseline and Model 3 respectively.

OAW Study

Oblique flying-wing is an alternative supersonic aircraft concept. Ames, Boeing and Dou-

glas Aircraft Company have joined to form a study group to investigate the feasibility of

OAW for commercial use. The study includes aerodynamic performance, stability, struc-

ture, landing gear, airplane exits, and airport regulations. The study group has decided to

build a wind-tunnel model to test the aerodynamic performance of the airplane.

The CFD portion of this effort was to analyze and design the airfoil shape and deflection

of the wing. The flow solver being used was Overflow code, a 3-D Navier-Stokes code

using the diagonal with ARC3D algorithm. Figure 2 shows the wings that were analyzed

since the beginning of the study in August 1992. Figure 3 shows the optimized results in

lift-drag ratio of one of the configurations by optimizing the wing deflection.

Since this study is "also under ITAR regulation, the results can only be presented in the

weekly group meetings; and no result has been published in any form.

Haack-Adams Body

The purpose of this study was to search for a design method to minimize the drag of a

supersonic projectile. The baseline configuration chosen for this study is called Haack-

Adams body [6], which is a body of revolution with a pointed nose and a base of finite

aa'ea. This body has minimum wave drag under slender body theory. Wind-tunnel data are

available for CFD validation. The method of optimization makes use of Fourier Sine

expansion which has two main advantages over the traditional techniques based on shape

functions and control points:

• The volume of the body is fixed without putting external consu'aints.

External constraints cost more computational time. For some cases, fixed volume is not

feasible.

• Number of design variables is substantially reduced.

More design variables cost more computational time.

The method of optimization and cun'ent results will be published zmd presented in AIAA

1 lth Applied Aerodynamics Conference at Monterey, California, August 9-I1, 1993. A

draft of this paper is attached in the Appendix.
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Abstract

The increasingperformance and environmental

demands requiredof an aircraftnecessitatethe need

fora setofdesigntoolscapableofmeeting thesechal-

lenges. This paper describesthe methodology be-

hind coupling a fast,parabolized Navier-Stokesflow

solvertoa nonlinearconstraintoptimizer.The design

parameters, constraints,gridrefinement,behavior of

the optimizer,and flow physicsrelatedto the CFD
calculationsare discussed. A theoreticalminimum-

drag body ofrevolutionischosen asan initialconfig-

urationforthe optimizationprocess.For the slender

axisymmetric body, a calculationincluding nonlin-

ear and viscouseffectsproduces a differentminimum

drag area distributionthan lineartheory and results

in a drag reduction of approximately 4°£. This de-

sign tool can be used in aerodynamic optimization

and sonicboom minimization ofsupersonic aircraft.

The High Speed CivilTransport (HSCT) isa prime

example.

Introduction

The need forcomputational fluiddynamics (CFD)

in aerodynamic optimizationhas been highlightedas

the supercomputer playsa significantrolein aerody-

namic research.One ofNASA's researchthrusts,the

High Speed Research Program (HSRP), defineschal-

lengesinsonicboom and aerodynamic optimization.

The primary focus isthe High Speed CivilTransport

(HSCT), I which is the next generation supersonic

passenger aircraft.In thispaper, the techniques and

toolsof aerodynamic optimizationwillbe described.

A theoreticalminimum drag body of revolutionis

* Research Scientist, Member AIAA

** Junior Research Scientist

t Assistant Chief, Computational Aerosciences
Branch. Senior Member AIAA

Copyright (_) 1993 by the American Institute

of Aeronautics and Astronautics, Inc. All rights

reserved.

chosen as the baseline configuration for the optimiza-

tion process.

A shape perturbation method is chosen for opti-

mization in the present study. A similar method was

used extensively by Haney, Johnson, and Hicks: to

optimize transonic wings. In their method a poten-

tial flow solver was coupled with a feasible direction

algorithm. The design variables were the scalar co-
efficients of a finite set of chosen sine and exponen-
tial functions. These functions were then added to

the upper surface of the wing, perturbing the wing's

shape. Cosentino and Hoist 3 coupled the TWING

and QNM codes and performed a spline fit across

control points located in the upper surface of the

wing. In a two-dimensional analysis, Vanderplaats

and Hicks 4 coupled a potential code with the con-

straint optimizer CONMIN. Polynomial coefficients

were used as design functions; lift and wave drag were

used as test case objective functions. Aero-function

shapes were developed through the use of an inverse

optimization process by Aidala, Davis, and Mason. s

These were used with a potential flow code coupled

to CONMIN. Each shape was designed to control an

aspect of the pressure distribution and then employed

as a design variable in the optimization process. The

present method takes advantage of a Fourier sine se-

ries that defines the original body. The Fourier coeffi-

cients make for convenient, physically relevant design
variables.

As a test case, the Haack-Adams 6'r's (H-A) the-

oretical minimum drag body of revolution is chosen.

The tt-A body is selected in this study because it is

a classic aerodynamics problem for which validating

experimental data 9 are available. Further, because of

its simple geometry, running large numbers of permu-
tations is still relatively inexpensive. And since the

geometry ends in a finite base, it is particularly well
suited for space-marching codes. Also, by including

viscous and other nonlinear effects it is hoped that a

new optimum may be located.

The H-A body is first derived and then the CFD

flow solver is validated on the geometry over a range

Version 6.1 1



of Machnumbersandgriddensities.Thentheopti-
mizationprocedureisdescribed,includingoptimizer
behavior,designvariablestudies,andtheconstraints
used.Finally,severalrunsoftheoptimizer/flowsolver
arecompletedon theH-Abodyandtheresultsare
presented.

U, OeD

_ 0_ IL/2 J = x

--'7--
Figure 1. A body of revolution.

Haack-Adams Body

The H-A body is a classic aerodynamic shape

derived from supersonic slender body theory. This

shape minimizes the wave drag subject to constraints

on the volume and base area. The H-A body was cho-

sen as a test case for this approach to optimization.

It was chosen for its database of experimental data
which can be used as a verification of the CFD code.

The simplicity of the geometry makes grid genera-

tion relatively easy and robust. The finite base of

the H-A body makes for an easier correlation with

experimental data, which has an attached sting, and

for modeling with space-marching codes.

Slender-body theory, which was used in deriving

the H-A body shapes, is a special case of small pertur-

bation potential-flow theory with the additional re-

striction that the product r t_v/_-]-_- 1 is much smaller

than z, where r is radius of the body at some stream-

wise distance z along the axis of the body, and Moo is

the freestream Mach number. The theory described

in this section can be found in most aerodynamic
textbooks, l°Jl but is reviewed here for convenience.

Consider supersonic flow of velocity U and den-

sity poo over a body of revolution of length L as shown

in Fig. 1. The velocity potential due to a linear source

distribution of strength Uf(x) is

t / f(_),(r) = ----
2* O: -- _)_ -- 3_r2

o

d_

where /3 = _ - 1 and z = L(1 + cosO)/2. Ex-

pressing f as a Fourier sine series,

](0) = L _-'_ ot. sin(nO)

The derivative of the cross-sectional area, (A') can

be approximated by f. Integrating f produces,
#

AO) = /l(e)dO

r

-- [a_ sin(n0)][mn O]dO
2

=

L2J " I 4 n
A(O) = -- at{r -- 0 + -sin.'20)+ c%-sin 9+

4 [ 2 3

OO (sin£n._--.1)# __ sin(n+ 1)@_}Z_'_\ n--1 n+l ]
(l)

it=3

Slender-body theory gives the formula of wave drag,

_rp°°U2L2
8

Equations (1) and (2) show that the cross-sectional

area and the wave drag are only dependent on the
Fourier coefficients a,,, not the Mach number. The H-

A body is defined by the body shape that minimizes

D_ subject to the following conditions:

C1 _= the area at the base A(L) = A_a,, is
fixed and non-zero

C2 -- zero slope at the end, aa

C3 - the location of maximum thickness,

zma_, is fixed

It is easy to check that Eq. (1) satisfies C2. The

remaining two conditions C1 and C3 qletermine the

values of c_1 and a_. In order for a body to produce

minimum drag, Eq. (2) suggests that _n = 0 for

n > 3. Condition C1 gives

_1 - (3)
L2r

and C2 gives
o: 1

¢'2 - -- (4)
2 COS 0 m4x

Optimization Procedure

The optimizer first generates a baseline objective

function from the initial values of the design variables
supplied as input. The optimizer then perturbs each

of the design variables in order to locate a search di-

rection. During each perturbation, a surface grid and
volume grid are generated. The flow is then solved

on the volume grid and from this, the objective func-

tion is produced. The optimizer continues to perturb

and search until a set of design variables, and thus a

new body shape, is obtained with a local minimum

objective function (see Fig. 2). With NPSOL. both
linear and nonlinear constraints can be added to the

design variables.
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Figure2.
dure.

i

t

Diagram of optimization proce-

Design Variables

Perturbations are performed through the use of

design variables that have a direct influence on the

objective function. The design variables used here

were inspired by the original Fourier sine series used

in the derivation of the H-A body. Equation (1) can

be rewritten using Eqs. (3) and (4) as

r _ At,... _ 1

r _" -- fAm°= L(r- 0 + -sin20)+ 3'14sinaS+
,_== 2 3

sin )8 sin(_m, q- 2)#

_'_ -- m + 2 / (s)
m=2

where 7,,_ = cr,_/al for m = 2, 3, ... Where rma_ and

A_,,,_/A,_,_= are known. According to linear theory
7m rn -- 2 .... , N are set to zero. However, since

nonlinear effects are included in the CFD analysis,

these coefficients were chosen as the design variables.

Therefore, the optimized configuration will also be

defined by Eq. (5).

Constraints

It is important to check that this optimal con-

figuration satisfies the three conditions (C1, C2, and

C3) of the H-A body. Equation (5) satisfies C1 when

evaluated at 0 = 0 and (dA/dx = 7rd(r_)/dx).

dA d# 2A66,_ _ 2sinS9 4sin_gcoa8

- = --r--_--_ + 3'1

dO dx LrA,.°_ _ sin # sin #

E ___
"_m sin 0

m=2

(6)

i

m
36

Figure 3. Haack-Adams, UPS marching

grid with a number of the planes omitted

for simplicity.

Equation (6) is zero when evaluated at # = 0. Note
that the terms inside the summation sign are zero by

L'H6pital's Rule, thus, C2 is satisfied. Condition C3

requires the H-A body tosatisfy (dA/dx)lz=r,,,= = O.
In the optimization process, the location of the maxi-

mum was allowed to change in such a way that -1 <

(dA/dz)l_=,_,,.= _< 1, that is

--2sin a 8,.== + 4"y z sin 2 #._°= cos 0,_°=+

,. -oos(m+ _<
m=2

t (v)

where Om_= = cos -1 (2x,,_:/L- 1). This constraint

effectively allows x,_ (or 9,,_) to shift by a small

amount, whereas on the original H-A body x,_ is

fixed. An additional requirement is needed to ensure

that the radius of the optimal body (Eq. (5)) is always
greater than or equal to zero; that is,

1 4

(:r--9 + -sin28) +-in-sin sS+
2 3

sin )@ sin(m + 3)0 --_

m=2

o (s)

for all 0 > 0 > ,'r. Equations (7) and (8) set the

relationships among the 7's and are treated as con-

straints for the optimization problem.

Flow Solver

The implemented CFD flow solver is the 3-D

parabolized Navier-Stokes code, UPS3D. t-" This is a

space-marching code that calculates steady-state vis-

cous or inviscid solutions to supersonic flows. A conic

approximation is made for the initial marching plane.

This code is further supported b.v a hyperbolic grid
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generationschemez3 that is sufficiently fast and ro-

bust to operate within an automated optimization

environment. In this study, both viscous and inviscid

supersonic calculations are employed. From these so-

lutions, the drag coefficient Co is calculated by inte-

grating pressure and skin friction (if applicable) over

the surface of the body.

The UPS3D code uses a step size of 0.1% of the

body length (L) on a grid of 21 points in the circum-
ferential direction and 50 points in the body-normal

direction. The grid points are clustered near the body

surface (see Fig. 3).

Objective Function

Five design variables, namely, 7_, "/3, ..., 76 of Eq.

(5) are used in the majority of the remainder of this

study. At each step, the optimizer alters the values of

the 7's and a new shape is defined. A new computa-

tional grid is then created and UPS3D calculates the

flow over this new geometry. The wave drag coeffi-

cient (CDw) is determined by numerical integration

of the pressure coefficient (Cp) over the body

The user needs to define F(z), A, c(z) and the
bounds for each, as well as an initial estimate of the

solution. An important consideration is the difference

interval used in the finite difference approximation

of the gradient. NPSOL has an option to calculate

the difference interval; however, this involves a large

number of calls to the flow solver, which is imprac-

tical. The difference interval is specified as an input

throughout this study.

CD
W

0.125"

0.I00"

0.075"

0.050

• ,_.Im'zm_mml dlta

-- ChJtr. tl_]
UPS3D

....S_Idet-body _e_

M_

Am_ = ,j Area = Z dx

o

Figure 4. Wave drag comparison over a

range of Mach numbers. L = 7
2R,n6=

If skin friction as well as pressure is included in the

integration then total drag is calculated.

Optimizer

The optimizer, NPSOL, z4 is a collection of For-

tran subroutines designed to solve the nonlinear pro-

gramming problem:

minimize F(x)

[ "/]subject to: l< Ax <u

c(z

where F(z) is the objective function, z is a vector

of length n that contains the design variables, c(x)
contains the nonlinear constraint functions, and A is

the linear constraint matrix. Note that u and I, the

upper and lower bounds, are vectors and thus are

specified for each variable and constraint.

NPSOL uses a sequential quadratic programming

algorithm to look for the minimum of F(z). Within
each iteration, the search direction is the solution of

a quadratic programming (QP) algorithm. Each QP

subproblem is solved by a quasi-Newton approxima-

tion. The optimizer stops when it finds a local mini-

mum of F(z).

0.3

0.2

0.1

e_

! °
-0.1

-0.2

-0.3

iliiii:iiii/' ili iliilii!i gii::

0 0.2 0.4 0,6 0.8 1

ganm_2

Figure 5. Constrained optimization paths

for a difference interval of A 7 = 0.01 (solid

line) and A 7 = 0.005 (dashed line).

Results and Discussion

Test Case
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Asa validationtestcase,theUPS3Dcoderun
in inviscidmodeiscomparedagainsttheexperimen-
tal data. A reviewof Fig. 3 illustratesa typical
gridusedbyUPS3D,whichshowsthesurfaceaswell
asaplanenormalto thebody.In theexperimental
study,9 the H-A body had a length L of 36" with a

fineness ratio L/2rm_ of 7. The location of maxi-

= 2v'mum thickness was Xrnaz -_"

and Abo,,/A,_,z = 0.532.

The UPS3D code was tested over a range of su-

personic Mach numbers and compares well with char-

acteristic theory and experimental data (see Fig. 4).
Note the variation of wave drag with Mach number

predicted by both the characteristic theory and in-
viscid CFD solutions. Slender body theory predicts

no variation of drag with Mach number (see Eq. 2).

In order to first visualize the process of opti-

mization, a two-design-variable (72 and 73) case is

considered. Figure 5 is a contour plot of the wave

drag coefficient with respect to 72 and 73. The dots

in the figure are iterative points in the optimization.

Linked together, they form a search path. The thick-

est solid line satisfies the equation (dA/dz)l_=x,,,., =

0, and the shaded area satisfies the inequality -1 <

(dA/dz)l,=,,,., < 1, (Eq. (7)), which is the con-
straint used. Both the thinner solid line and the

dashed line are search paths used by NPSOL with

difference intervals of A7 = 0.01 and A7 = 0.005,

respectively. The larger difference interval calculates

a less accurate gradient and thus locates a minimum

more slowly than the smaller difference interval. How-

ever, there are two local minima in this design space

along the constraint boundary. The larger difference
interval found the better of the two minima. The

smaller difference interval stopped before it found

that minimum. This is not always the case as a

larger difference interval could miss a local minimum

by "stepping" over it entirely.

.0._

.0._

O._ r

'0._

0._
0,2 0.4 0,6 0.g 1.0

X/L

Figure 6. Inviscid optimization with five

design variables. Moo = 2.5 2--g-_:7_.-7L _

0.125"

0.100"

CD w

0.075"

0.050

• ExpermaentalDim _ "
Calculmima(original)
Ca_-ulmi_ (¢,_maizod)

2
Mo:,

Figure 7. Wave drag comparison between

the original H-A body and the H-A body
optimized at Moo = 2.5, over a range of

Mach numbers. 2--h-_-= -7L _

Inviscid Optimization

The inviscid optimization process gave the re-

sult shown in Fig. 6 for a freestream Mach number
of 2.5 and an angle of attack of zero deg. The sec-

tional wave drag coefficient is plotted along with the

radius of the original and optimized shapes. The vol-

ume of the forebody is reduced by NPSOL in order to

improve the sectional wave drag in this region. The

improvement over the original H-A body is reduced
aft of the maximum cross-sectional area because of an

increase in volume that occurred satisfying the con-

straints (C1 and C2). Overall, the wave drag of the

Haack-Adams body was reduced by 5%. Although

the optimized body was designed at Mach 2.5, Fig. 7

shows that the same optimized body gives lower drag

than the H-A body at other Mach numbers. Us-

ing A7 = 0.01, 48 new body shapes were generated
and analyzed to reach this result. The whole pro-

cess took approximately 2.5 CPU hours on the Cray-
YMP. Each flow solution calculated by UPS3D uses

160 sec, with an additional 1.3 sec in grid generation.

Viscous Optimization

The same design procedure was also performcd

with viscosity taken into account. The result is shown

in Fig. 8. The optimizer took much the same strat-

egy as the inviscid case in that the nose of the body

was reduced, while a penalty was paid at the rear of

the body. The viscous drag results include both wave

and skin friction drag, so while the actual drag reduc-

tion is comparable to the inviscid optimization, the

improvement in this case is 4%. Figure 9 shows that

the same body gives lower drag than the original at

other Mach numbers. This optimization process with

A 7 = 0.01 took about 3.5 CPU hours total on the

Version 6.1 5
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0.10

O.O&

0.06-

0.04-

0.02-

0.00
0.0

Sectional Drag

,=, _'/

y
0.2 0.4 0.6 0.8 1.0

X/L

Figure 8. Navier-Stokes optimization with
L

five design variables. Moo = 2.5, _ = 7,

Re = 9 x 106

-O.Og

"0.06

-0.04 r

-0.02

0.00

increases, the reduction of drag versus the original

decreases slightly.

The lower half of Fig. 11 indicates the radial dis-

tribution results of three optimization processes at

differing Reynolds numbers. The solid line is the

original H-A body, the dashed line is the body op-

timized at a Reynolds number of 106, and the dot-

ted line is the body optimized at a Reynolds num-

ber of 105 . The sectional total drag coefficient of

these three configurations calculated at a Reynolds

number of 106 is shown in the upper half of the fig-

ure. The lower Reynolds number case, which features

thicker boundary layers, and hence greater flow dis-

placement, shows the largest perturbation in geome-

try from the H-A body.

0.125

0.I00

CD
w

0.07_

0.050

*"---..°°°°.,
L_nd

original
... optimized

Figure 9. Total drag comparison between

the original H-A body and the H-A body

optimized with 5 design variables at Moo =

2.5, over a range oflVlach numbers. _--a-:-_._--L _

7,Re = 9 x 106

0.105"

0.100"

0.095-

C D 0.090

0.085-

0.080"

0.075
-I

. .........._°°.°°"°"_'°
Legend

ovlglnal

-.. o_imlzed

a (degrees)

Figure 10. Total drag comparison between

the original H-A body and the I-/-A body

optimized with 5 design variables at Moo =

2.5 and c_ = 0, over a range ofa. _--N_--_, -7,L _

Re =9 x 106

Cray-YMP and employed 40 flow solutions. Each so-

lution took UPS3D 320 see with an additional 1.3 see

utilized in grid generation. The following table gives

the values of the design variables for the inviscid and

viscous optimization processes:

Haack-Adams Body

Moo = 2.5

7-_ 73 74 7s 76

Inviscid 0.853 0.673 0.495 0.420 0.0846

Viscous 0.679 0.598 0.353 0.264 0.01875

Off-Design Performance

The effects of off-design angle of attack and Rey-

nolds number on the performance of the new, opti-

mized shape were also investigated. For the body

that was optimized at zero angle of attack, the effects

of nonzero angles of attack are shown in Fig. 10. As

0.10

X/L

Figure 11. Total drag comparison between

the original H-A body and H-A bodies opti-

mized with 5 design variables at M_ = 2.5

and a = 0, over a range of Re numbers.
L

0.08

0.06

0.04 r

0.02

0.00
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Grid Refinement computational grids.

A calculation performed on a coarse grid will,

in general, contain a larger numerical error than one

performed on a fine grid. However, the coarser grid

will, in most cases, run significantly faster. It is desir-

able to reduce the computer time by using the coars-

est grid possible that will still yield a physically ac-

curate result. The key to running an optimizer/flow

solver efficiently is to choose a sufficiently coarse grid

that the cumulative CPU time does not become ex-

cessive, yet a fine enough grid to locate a physically

valid optimum.

outer qrLd ].£ne t_'_' i

_n_//_.S'S"'- i

_" : h-LtanO

•°" k i

•¢.'. ;

0 L

Figure 12. Relationship between the size of

the computational grid and the bow shock.

In this grid-refinement study, an optimization

problem at Mach 2.5 and zero-degree angle of at-

tack was considered. The computational grid had 21

points in the circumferential direction and the step

size of the UPS3D code was taken to be 0.1% of the

body length. The grid resolution in the circumfer-

ential direction and the step size were fine enough

to be kept fixed; only the number of grid points (P)

in the normal direction was altered. The distance

between the first grid point (in the normal direc-

tion) and the surface grid is less than or equal to

s = 0.5(h/P), where h, given by L tan(0), is the ver-

tical distance from the end of the body to the outer

grid (see Fig. 12). Due to grid effects, the calculated

bow shock position of the H-A body differed with grid

density until the grid was dense enough to resolve

the physical shock location. For each computational

grid, the angle _ was chosen so that the bow shock

was as close as possible to the outer boundary. The

table below gives the values of ¢ and s with different

Grid Points 0 Spacing

(P) (degree) (s/L)
10 5O O.O6O

20 42 0.025

30 38 0.013

40 36 0.009

50 32 0.006

60 31 0.005

70 30 0.004

95 30 0.003

The behavior of the flow solution and optimization re-

sults on the various grids are analyzed to characterize

the errors arising from grid density. For clarification,

the following definitions are introduced:

D(P)

D(oo)

DIn(P)

AD'(_)

AD°°(oo)

- CD calculated on a P-point

H-A grid.
= CD calculated on an asymptotic

H-A grid (approximated by 95

points).

= Co calculated on a P-point grid

whose surface shape is obtained

in an optimization process on an

m-point grid.

= [Dm(c_) - D(c_)l the drag

reduction of new design which

was obtained by the optimization

process on an m-point grid.

-- ID°°(oo) - D(oo)l the actual drag

reduction of the new design.

The errors due to grid density in the CFD com-

putations of the H-A body and the optimized design

are given by ID(P) - D(o_)I and lOP(P) - De(oo)l,

respectively. Both curves are plotted in Fig. 13 and

show a roughly exponential decay in error due to grid

density. Fig. 14 reveals the grid effect in the optimiza-

tion process and the CFD calculations. The dashed

curve is the error due to grid density in the optimiza-

tion process, given by [AD"(oo)- AD_°(oc)[. The

solid curve is the error due to grid density in opti-

mization and the CFD calculation, given by lAD'S(n) -

AD°°(oc)l. This figure indicates that the optimiza-

tion process does not require an overly fine grid in

order to locate a physical optimum.

The grid used in the optimization process still

has to be fine enough to capture the flow proper-

ties and relevant physics in order to obtain a grid

independent optimum. For example, if the grid with
P = 30 is used, the computed bow-shock is too far
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awayfrom the exactlocation, and thus the opti-

mized result has an understandably large error. If

the grid with P = 50 is used, the flow physics is
much more realistically approximated, and the opti-

mized result has a much smaller error (compare the

error at L = 50 in Fig. 14).

t6'

10'

"%,%%

_''%

--- II_OP) - i_(oo) I

;0 20 30 ,0 50 7o
P

Figure 13. Comparison of the error due

to grid density (normal direction) of the

original body vs. the modified body. The

modified body has been optimized at each
of the normal point grids.

1.25E-3

2,50E-4 °'"'"'°'":'"''"_

"w

30 4b 5b 60 70 8o
P

Figure 14. The effects of the number of

grid points in the normal direction on the

optimization process

_ 7.50E-4
K.1

/_ 5.ooe-4

Design Variables

As the number of design variables increases, so

do the degrees of freedom of the optimization pro-

cess. Often the larger the number of design variables

in the optimization process, the larger the reduc-

tion in drag. Figure 14displays the optimized Cot,,
from inviscid flow solutions with M_ = 2.5 under

different numbers of design variables. Each square

in the figure represents the drag coefficient obtained
from the optimization process with an initial guess

of 7i = 0, i = 1...n. Thus as a baseline, the original
H-A body is employed. Each diamond represents an

initial guess of 7i = 0.1, i = 1...n. For the case with

three and six design variables, the optimized CD_,

does not quite follow the expected reduction in Cow.
This is due to a local minimum around the baseline

H-A body for those sets of design variables. MORE*

0.0"/8

0.077

(C.) 0.076
o_imi-..,

0.075

Iattal Oaeu

• 7 t -0,O

• ¥i -0.!

0.074 0 i i ,
# of Design Variables

Figure 15. The effects of number of design
variables and their initial values on the op-

L
timized wave drag. M_ = 2.5, _ = 7

Conclusion

Because of its generality, CFD offers the aircraft

designer the opportunity to address many design is-

sues simultaneously. An added advantage is that the

geometry definition and performance data are com-

mon to any analysis or optimization problem. The

theory and implementation of these techniques have
been used to optimize both sonic boom and aerody-

namic efficiency for a recently developed HSCT type

configuration. This paper has demonstrated how the

same computational tools can be used to minimize

drag coefficient of the Haack-Adam body. The wave

drag is reduced by 5%, and the total drag coefficient

is reduced by 4%.

The grid refinement study indicates that one does
not have to use an overly fine grid in the optimizer/flow

solver operation in order to obtain an accurate opti-

mal body shape. However, the grid has to be fine

enough to reasonably capture the relevant physics.
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